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Abstract We consider a three dimensional system consisting of a large number of small
spherical particles, distributed in a range of sizes and heights (with uniform distribution
in the horizontal direction). Particles move vertically at a size-dependent terminal velocity.
They are either allowed to merge whenever they cross or there is a size ratio criterion en-
forced to account for collision efficiency. Such a system may be described, in mean field
approximation, by the Smoluchowski kinetic equation with a differential sedimentation ker-
nel. We obtain self-similar steady-state and time-dependent solutions to the kinetic equation,
using methods borrowed from weak turbulence theory. Analytical results are compared with
direct numerical simulations (DNS) of moving and merging particles, and a good agreement
is found.

Keywords Coagulation - Sedimentation - Self-similarity

1 Introduction

We consider spherical particles in a viscous flow. The particles move vertically with their
terminal velocity arising from the balance of the gravitational effect (fall or buoyancy) and
viscous drag. Since, in general, particles of different sizes rise or fall with different ve-
locities, their trajectories can cross and merging can happen. Realistic models of particle
merging are quite involved and in the present text we are going to consider only two very
simplified models: either any two particles whose trajectories cross merge, which we shall
refer to as “free merging”, or merging is restricted to particles of similar sizes (i.e. small par-
ticles avoid big ones due to moving along flow streamlines bending around the big particle),
which we call “forced locality” (defined in Sect. 2.3).

It will turn out that, although our problem is very simple to state, it is very rich in features.
The simplified model can be realized by considering a sedimenting kernel in the Smolu-
chowski coagulation equation. We will derive solutions to this equation analytically, and we
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examine the validity of such solutions with direct numerical simulations (DNS), in which
we let particles evolve individually according to certain rules for collisions and we study
their overall size distribution. We shall study different stationary regimes, either in time ¢ or
in the vertical coordinate z, and we will discuss self-similar solutions and study the role of
local and non-local merging. Whereas time dependent solutions of the sedimenting kernel
have received a lot of attention in the literature [1-3], the study of height dependence—also
treated here—is more rare.

The process we discuss is usually referred to as differential sedimentation and has been
linked to experimental results [4] and is used to predict rain initiation time [5, 6]. In par-
ticular, the model admits a power law distribution consistent with experimental data for
aerosols [5]. In our discussion, we will obtain this power law as an exact result, rather than
by dimensional analysis used in previous discussions [4, 7]. We recognize this result as
a Kolmogorov-Zakharov (KZ) cascade of the volume integral, similar to the solutions that
arise in wave turbulence. Solutions to the coagulation equation with a KZ cascade have been
studied in general [8, 9], and with a kernel describing galaxy mergers in particular [10].

We find that in the free-merging model the locality assumption necessary in dimensional
analysis and the KZ spectrum fail to hold [8]. We will obtain an analytical solution for such
a non-local system, and verify this with DNS. We will study self-similarity for both the
forced-locality model and the free-merging model. We will perform DNS for inhomoge-
neous solutions that are self-similar in the spatial variable z.

The starting point of our analysis is to write a kinetic equation for the coagulation process
in Sect. 2.1. In Sect. 3 we find the Kolmogorov-Zakharov solution for the kinetic equation.
Section 4 discusses the dominance of non-local interactions in the system. We study self-
similarity of our model in Sect. 5, and we analyze locality of such solutions in Sect. 6, where
we present numerical data. Finally, we introduce a “super-local” model in Sect. 7, reducible
to Burgers equation.

2 The Model

Let us denote by o the volume of a spherical particle and by r its radius,
o=«r’, Kk=4m/3. 1)

The Stokes terminal velocity of a rigid sphere of radius r with no slip boundary condi-
tions is given by the formula [5, 11, 12]

2 —
2 . 280r = pp)

u(r)y=cr-, 9, , 2)

Fig. 1 A particle’s terminal A
velocity u is determined by its _ 2
radius r. Larger particles will u(r)=(2gp/on) r
have a larger terminal velocity,

depicted by the arrows, following
definition (2). Created by T. Stein

®
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Coalescence of Particles by Differential Sedimentation 1179

where g is the free fall acceleration, py and p, are the density of the surrounding fluid and
the particle respectively, and 7 is the dynamic viscosity of the surrounding fluid.

Experimentally, the formulae (2) are valid for air bubbles in water at 20°C with » < 1 mm,
and these bubbles can be considered spherical. Slip-flow corrections can be necessary for
other gases and fluids [12]. The following data for water droplets and particles in the at-
mosphere can be found in Pruppacher and Klett [5]. For droplets, corrections to (2) are
necessary when r > 30 pwm, which changes the formula’s dependence on r2. They can be
considered spherical for radii up to 535 um. For atmospheric particles, (2) can be consid-
ered to depend on r2 for large particles. However, atmospheric particles are generally not
spherical and will thus require other corrections.

Despite physical complications, we will assume (2) and (1), and we will express both in
terms of volume o,

13 _1/3

r(c)=«k"""o u(o) = ck 35?3, 3)

We compute this model using direct numerical simulations in a periodic box of 10 x
10 x 10 cm with particles that are defined by their x-, y-, and z-coordinates and by their
volume o. At each time step the particles move according to their fixed terminal velocity,
using definition (2). We fix our parameter ¢ such that a particle of radius 0.1 cm moves
upwards with velocity 20 cm s~!, which resembles the situation of air bubbles in water [12].

The particles are generated at a range of small o, with their smallest volume oy ~ 4.2 -
1076 cm?, equivalent to a radius » = 0.01 cm. They are removed from the system once they
become larger than 10%0, or r ~ 1 mm and are assumed to be spherical at all sizes for
computational purposes. With different velocities, the particle trajectories may cross, and
depending on the rules of interaction they can then merge. These rules are governed by
collision efficiency, which will be explained in Sect. 2.1.

2.1 The Kinetic Equation

We suppose that the distribution of particles can be adequately characterized by density
n(o, z,t) (the number of particles N of volume between ¢ and ¢ + do, per fluid volume
V per do, at the vertical coordinate z and at instant ¢). In particular we suppose here that
the dependence of particle distribution on the horizontal coordinates can be averaged out.
This hypothesis is valid if the dynamics do not lead to strongly intermittent distribution in
the horizontal directions, for example if the fluid is well mixed in the horizontal directions.
Our numerical simulations appear to support such a mean field approach well, and in future
work it would be interesting to examine theoretically why this is the case.

The goal of this section is to derive a kinetic equation for n—also called Smoluchowski
coagulation equation [13]—using a kernel describing differential sedimentation. We write
the collision integral, which expresses simply the fact that two particles of volumes o and
03, with o1 4+ 02 = o, can merge to give a particle of volume o (inflow), or a particle with
volume o can merge with any other particle of volume o7 > 0 and give a particle with
volume 0, = o + o, (outflow). Also, we determine the cross-section of interaction between
two particles by the condition that particles merge upon touching, that is if their centers are
at a distance at most r| + r,, which gives the geometric cross-section of 7 (r| + )2, Finally
the collision rate between particles of volume o and o, is taken to be proportional to their
relative velocities |u (o) — u(o0,)| and to their number densities n; and n,, which is a mean
field type hypothesis.

The left hand side of the kinetic equation contains the advection term d,n + ud,n, which
we shall also denote as the total derivative dn/d¢, while on the right hand side we put the
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collision integral. Note also the shorthand n = n(o, z,t), u = u(o), ny =n(oy,z,t), u; =
u(o1), r1 =r(oy) and similar for n,, u, and r,. Thus we find

1 o
on +udn = +§f doidos|uy —uy|mw(rp + )2 ny8 (o — oy — 03)
0

+00
3 / dodos|u — us|m(r + rz)znn28(a| —0 —03)
0

1 +o00
— 5/ doydos|u — uy |7 (r + r1)*nn8(oy — o — o1). “4)
0

It is useful to express the u and r in terms of o using (3),
an + CK_2/302/3azn

ek B [r oo 2/3 2/3, 1/3 1/3.2
=T/ dolf dozloy"” — o, (0, + 0, ) niné(oc — oy — 02)
0 0

1/3

— |(72/3 —(722/3|(01/3 + o, Vnn,8(o) — o — 03)

—|02/3—012/3|(01/3+all/3)2nn16(02—a—01). 5)

Let us introduce the interaction kernel K (o7, 0»),

~4/3 5
o2/ 2/3

CcK
K(o1,00) = — o0} + 02, (©6)

2 2
which for a general kernel K reduces (4) to the Smoluchowski equation. It is useful to
note that our kernel (6) is homogeneous in o, with K (201, {02) = ¢*3K (01, 02). We also
introduce the collision rates

Rs12 =K (01, 02)n1n28(0 — o1 —03) @)

with Ry, Ry, defined analogously. Now the RHS of (5) can be written in a compact form
dl’l +o0 “+o0
— 2/ dUl/ doz(Rs12 — Rioa — Ryo1). ®)
dr 0 0

2.2 Characteristic Timescales

We study the physical relevance of (5) by comparing its characteristic time t,;; with the
characteristic residence time in a typical system, t, = L /u, where L is the vertical extent of
the system, and u is as in (3). To find 4, we note that n ~ % and we introduce the volume
fraction v ~ 42, so that:

v
n~ —.
o2

Now, using the kinetic equation (5) we can write

v
ek g2/ — = ek~ BraPy. )

Tds

o
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Thus we find the following relation between the characteristic times:

T, Lek *Bro'By 2L (10)
—_—= X —,
Tys ck—23¢2/3 r

where we recall that o!'/3 = k~!/3r and approximate «~'/3*z ~ 2. From [5] we find that
for a cumulus cloud, typically L ~ 10* m, r ~ 10™> m, and v ~ 1075, Thus, we find that
To/Tas ™~ 10%, which implies that the kinetic equation is relevant in a cloud system with
gravity when we regard time and length scales.

2.3 Collision Efficiency

The kinetic equation (5) allows merging of particles of any sizes, without any discrimi-
nation. We shall refer to this case as “free merging”. More realistically one should also
take into account the collision efficiency between particles. We define collision efficiency
&1» = E(o1, 07) between particles of volumes o, and o, as a number between 0 and 1, which
enters the collision integral by multiplication with the collision rates R, so R,> would be
replaced by R,2€), and more generally for example the integrand of (8) would become
Rs12€12 — Ri152E52 — Ros1E51.

In particular, one could restrict merging to particles of similar sizes, taking into account
that small particles cannot collide with much larger ones because they bend around them
along the fluid streamlines. In the simplest such model which will be considered later in this

paper,

1 ifl/qg <oy/or <q,
5lz={ Ve (11)

0 otherwise,

where g > 1 is the number representing the maximal volume ratio for the particle merging.
Compared to a more involved form of collision efficiency used by Valioulis et al. [14], the
simplified kernel we use mimics the behavior for particles with » = 0.01 cm which is similar
to the regime we study numerically. We will refer to the model with finite g as “forced
locality”.

2.4 Scaling Argument

For our simple setup one could derive a steady state solution merely by physical and dimen-
sional arguments, following Friedlander [15], Jeffrey [7], and Hunt [4]. The main remark is
that at steady state, the system has a constant flux of volume. The total volume of particles

Fig. 2 Without applying the A
efficiency kernel £, particles
merge whenever they cross.
Including £ with small g, only
situation B is allowed, i.e. only
particles of similar size may
merge; particles of dissimilar size
(situation A) are allowed to cross
one another without merging.
Created by T. Stein
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per unit volume of fluid that passes from particles smaller than o to particles greater than o

is of the order:
20
d
/ 2 sds. (12)

We can estimate from the kinetic equation (8) and (6, 7) that dn/df ~ o>R, with R ~
Kn’0~"and K ~ o*3. If we assume that n ~ ¢*, we find that dn/dt ~ o7/*+2" and we ob-
tain the scaling o '3/3+2" for the volume flux (12). For constant flux, we arrive at v = —13/6,

or n ~ o136 Naturally, the dimensional analysis assumes locality of interactions.

3 Kolmogorov-Zakharov Solution

One of the simplest questions one can ask with respect to the kinetic equation (5) is if it
allows for a scaling stationary solution of non-zero flux. Such a solution, if one exists, is
called a Kolmogorov-Zakharov (KZ) spectrum because, like in the classical Kolmogorov
spectrum, it corresponds to a cascade of a conserved quantity (total volume occupied by
particles in our case) [8, 10]. In this section we investigate the scaling exponent and existence
of such solutions.

3.1 Zakharov Transform

A derivation of the KZ solution can be achieved through the technique of the Zakharov
transform [8, 16]. Let us consider a steady state (i.e. time and space independent) solution
of (5) of form n ~ ¢, and let us aim to find v. Note that this is a reasonable thing to look
for, since we can easily see from (5) that our collision integral is a homogeneous function in
the o and in the n.

We start by expanding our collision rates from (7) using (6), and obtain the following
equation in o':

e 2/3 2/3,, _1/3 1/3\2
v v
R(,12=72 0, —o," (0, +0,7)0]0,8(0 — 01 —07),
where R, and Ry, are expanded similarly. We then continue by non-dimensionalising the

rates R by writing o as o{o and o, as 0,0, s0

ck P 1/342v | _12/3 2/3,, /173 /332 v v I
RGIZZTU lo,”" —0o," (0, +0, )0, 0, (1 =0 —0,) (13)

and R;,, and Ry, are transformed in a similar way.
The Zakharov transform consists in passing in R}, to new variables &; and &, defined
by

/ ’ 52
Ul = -, 0'2 = —_.
[eh] [ef]
This way, we obtain
KM 13 a 1320 =23 223 213 | <132y .~
Rigo = TU 0, o, — o, 1(6,"” +0,7)6,0,8(1 =01 —062). (14)

A similar expression is derived for Ry, .
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Combining the transformed terms and dropping primes and tildes, we transform the com-
pact kinetic equation (8)

+o0 +00 3
0:/ do./ doy(1 — o, 7 — o "Ry .
0 0

Here, we note that the integration variables for R;,, become dojdo, = JZ&f 3d6,d6,, with
a similar transformation in R,,;. Now, if we choose v such that —10/3 — 2v =1, then we
have the factor §(1 — o} — 02)(1 — 07 — 0,) = 0 appearing in the integrand, which solves the
equation, i.e. v = —13/6 is the candidate for the KZ exponent. This method of derivation
can be applied to various kernels for the Smoluchowski equation [8].

Let us note that our exponent v is that of n(c). In literature, one commonly finds
the radius distributions, n(r), which can be expressed in terms of n(o) from the re-
lationship n(o)do = n(r)dr. Thus, n(r) = n(o)do/dr o r3’r? = r3'+2, and therefore
v, =3v4+2=-9/2[7].

However, the KZ spectrum is only a true solution of (5) if the collision integral on the
RHS of this equation (prior to the Zakharov transformation) converges. This property is
called locality, and it physically means that the particle kinetics are dominated by mergings
of particles with comparable (rather than very different) sizes. Convergence of the collision
integral on general power-law distributions will be studied in Appendix 1. We will see that
(without modifying the model to enforce locality) the —13/6 scaling exponent gives rise to
non-local interaction between the particles both with the smallest and the largest particles
and, therefore, the KZ spectrum is not a valid solution in this case.

3.2 KZ Spectrum in the System with Forced Locality

Locality of interactions, and therefore validity of the KZ solution, are immediately restored
if one modifies the model by introducing the local collision efficiency kernel as in defini-
tion (11). This kernel is a homogeneous function of degree zero in o and, therefore, the KZ
exponent obtained via the Zakharov transformation remains the same. In Fig. 3 we can see
that the Kolmogorov-Zakharov scaling appears in a system with forced locality.

Fig. 3 Distribution of particle
volumes averaged over several
times after 140,000 time steps for
the forced locality situation with
q = 2. The dashed slope
represents the —13/6 KZ
spectrum (compare with [14])
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4 Kinetics Dominated by Non-Local Interactions

As an alternative, we may assume that the dominant interactions are non-local and find a cut-
off dependent stationary solution. This is relevant if it is not desirable to use the collision
efficiency models which guarantee locality (for instance using the kernel (11)). In this case
one should accept the fact the kinetics are dominated by non-local interactions, and that the
low-o or/and high-o cut-offs dominate the collision integral. In fact, such a non-locality
can allow us to significantly simplify the kinetic equation and reduce it to a differential
equation form. As shown in Appendix 1, contribution to the collision integral from non-
local interactions with the smallest particles (o7 < o) is

—c19,(6*n), wherec1:/ nyodoy, (15)

min

where we have dropped the explicit dependence of the upper integration limit on o, since the
integral is divergent as oy, — O (this is the hypothesis of non-locality), so the dependence
on the upper bound is a sub-dominant contribution.

The contribution to the collision integral from non-local interactions with the largest
particles (o > o) is

Omax
—con, where ¢; :/ nlafwdol. (16)

Similarly to above, here the lower integration bound is omitted.
Putting these two formulae together, we obtain the following effective kinetic equation
for the cases when the non-local interactions are dominant,

dn
— =—¢10,(c*’n) — can, 17
o 105 ( )—¢ a7
where constants ¢y, ¢, are defined in the formulae (15) and (16). Note that (17) is valid
when the non-local interactions with the smallest and with the largest particles give similar
contributions, as well as in cases when one type of non-locality is dominant over the other.

In steady state dn/df = 0 and the solution of the resulting ordinary differential equation
is

39 =173
n=Co e " (18)

with C being an arbitrary positive constant. Note that the constants C and ¢, /c; appearing in
the solution (18) can be related to the “physical” data of oin, Omax and n(omin), through (15,
16, 18). We obtain

1(0) = n(Cmin) “in 23 omms Zin (19)

expl(;Z-) 7'/ log 2m]

Omin Omin

The solution (18) is interesting since it is not a pure power law. For large o we have
n ~ Co~*3 which is a limit when absorption of the smallest particles is much more impor-
tant than being absorbed by the large particles, i.e. when the first term on the LHS of (18)
is much greater than the second one. This limit corresponds to a cascade of the number of
particles (not their volume!) which is a conserved quantity in this regime.

In Fig. 4 we show our numerical results for the non-local model. Particles are produced
uniformly in space with volumes ranging from oy to 30y, and particle density within this
size range is kept constant in time. Particles are removed from the system once they reach
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Coalescence of Particles by Differential Sedimentation 1185

Fig. 4 Averaged distribution of 102
particle sizes for the situation
without forced locality

(“qg = 00”) after 200,000 time
steps. The vertical dotted lines
bound the inertial range at

Omin = 300 and omax = 10300.
The dashed curve represents the
fit conform (19), with opj, and
omax given by the bounds of the
inertial range, and

n(Omin) = 1.5 - 1010; the
dash-dot slope represents a
power law of o~43

10 o /oo

Omax = 1030y, with probability p(o) = 1 — exp~@©~m0" with a <« 1. The original results
have been averaged over neighbouring data points to obtain the continuous graph in Fig. 4.
We also used (19) and find that with appropriate parameters this solution fits the numerical
data.

We can check our hypothesis of dominance of non-local interactions directly by counting
the number of collisions within a certain timeframe at statistical steady state. Namely, for
each size bin we count the number of collisions leading to a particle entering the bin, and the
number of collisions leading to a particle leaving the bin. We distinguish between local and
non-local collisions using the particle size ratio g*, i.e. if 1/10 < g* < 10 we consider the
collision local, and non-local otherwise. For non-local collisions, we distinguish between
a collision with a very large particle and a very small particle. In the kinetic equation (5)
(which we do not rely on in our procedure) this would correspond to splitting the collision
integral as follows:

dn olq o/q
=z =+/ do f (o1, 0 —ol)—f do (01, 0)

min Omin

/2 qo
+/ dUlf(UlsU_Ul)_/ doy f(o1,0)

/9 o/q

- / " do1 £ (01, 0), (20)
q

o
where
f(o1,02) = K(o1, 02)n1n;.

We perform DNS and for each collision that occurs we count its contribution to the dif-
ferent collision regimes as mentioned above. Our results are shown in Fig. 5. We notice that
once collisions with small particles are counted at o /o = g, with ¢ = 10 in this figure, their
contribution dominates almost immediately, and remains dominant for the entire inertial do-
main. We can also see that collisions with larger particles are only dominant in the forcing
range o < 30y, and collisions with similar sized particles only marginally dominates in the
intermediate regime for 30y < o < 300y.
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Fig. 5 Number of collisions N 10°
per bin [l.lkcro, 1.1k+100] over
10,000 time steps, which lead to
a particle entering or leaving the
bin. Triangles: contribution due
to collisions with large particles;
circles: contribution due to
collisions with similar sized
particles; squares: contribution
due to collisions with small
particles. Filled and open
symbols correspond to number of
particles entering and leaving the
bin respectively

5 Self-Similar Solutions

KZ solutions studied in Sect. 3 are valid stationary solutions of the kinetic equation (5) in the
systems modified by introduction of a local collision efficiency (e.g. using the model (11)).
We have argued in Sect. 4 that without such an enforced locality the non-local interactions
are dominant which results in a prediction for the steady state given in (18) and which is
qualitatively confirmed in direct numerical simulations of the dynamics of particles.

However, both of these approaches assume homogeneity in space as well as a sink at
large volumes (i.e. removing particles from the system when they reach a certain large size).
These two conditions cannot be made realistically consistent because there is not a physical
mechanism that could remove large particles from the bulk of the fluid.

Thus, it is more realistic to consider one of the following solutions:

— Time-dependent, height-independent solutions without a sink.
— Height-dependent, time-independent solutions with a sink at a given height (i.e. for bub-
bles in water an interface with air at a given maximum value of 7).

Both situations can be described by self-similar solutions of the kinetic equation (5). In
the following derivations of the self-similar solutions we will suppose locality, in the sense
that the dimensional analysis leading to the results supposes no dependence on the cut-off
scales oy and oy« Validity of the locality hypothesis will have to be examined a posteri-
ori.

We will start by considering the particle model without forced locality, and later we will
proceed by adding the effect of local collision efficiency followed by a super-local model
leading to Burgers equation.

5.1 Height Dependent Solutions

Let us start with the analysis of the time-independent state. We look for a solution n that is
self-similar in the sense that it verifies the scaling relation

n(o, z) = z2°h(zP o). (21
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Coalescence of Particles by Differential Sedimentation 1187

To determine the exponents o and B we need two relationships. The first one is that (5)
should give an equation on % as follows: introduce the self-similar variable T = zfo to
replace all occurrences of o, then (5) can be written as

2 7 +00 +o00
r”%“ﬁ*MMﬂ+ﬂﬂmﬂkumﬁﬂ/ dn/‘ doy(Teis — Tiea — Tor1) - (22)
0 0

with the rate

ek P 2/3 2/3,,_1/3 1/3\2
Tn= 2 o, =17 (7 + 5,7 h(t)h(1)é(t — 71 — T2)

with 7)., and T,;, defined accordingly. We need to have equal powers of z on both sides,
which gives

2p _1=2a— g
a—=B—1=2a—-p.
3 3

The other relationship expresses constant flux of mass through a given height z. Since
droplets of volume o move with speed u = u(o), this flux is fn(z, o)uodo. With & and
7 this becomes [ z%h(t)z */37*3zPrz7Pdr. The total power of z should be 0 for z to
vanish from this expression, which gives us the second relationship

8
—=-p=0.
o 3 B
Combining the two relations on « and B we find
8
e=-3.  p=-1. (23)

implying
n(o,z) =z"*n(o/z). 24)

5.2 Time Dependent Solutions

Let us consider a self-similar distribution independent of z but dependent on time, of the
form n(o,t) = i*h(f?0), where 7 = t* — t and t* is a constant, the meaning of which
will become clear shortly. The left hand side of (5) is replaced by 9,n = af*'h(iPc) +
Bi**F=1an'(f%5). Upon introducing v = %o, this becomes 7%~'[ah(r) + Bth'(r)]. The
right hand side of (22) is unchanged except for replacing z by . We thus obtain our first
relationship

;5—05:1. (25)

One could think that the second relation should come from the conservation of mass
fn(t, o)odo = ft"‘h(r)t’ﬁ 7t~Pdz. However, this condition is incorrect because the self-
similar solution in this case gets realised only in a large-o tail whereas most of the vol-
ume remains in the part which is not self-similar. This situation is typical of systems with
finite capacity distributions, and it has been observed previously for the Alfvén wave turbu-
lence [17] and for the Leith model of turbulence [18]. Thus, we have

n(o,t) = (t* — )*h(o (t* —1)> @7,
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As in the case of the Alfvén wave turbulence [17], it is very tricky to establish how to fix the
second constant « but it can be found via numerical simulations of the kinetic equation (5).

The above self-similar solution describes creation of infinitely large particles in finite
time, which rise with infinitely large velocities. Thus, no matter how large our system is,
close to the moment ¢ = ¢* there will be particles that travel across the entire height in short
time and, therefore, the z-independency assumption will fail. Note however that even close
to the singularity moment ¢ = ¢* the total volume fraction of such large particles remains
small. We will study further details of such self-similar solutions using the “super-local”
model in Sect. 7.2.

6 Locality of the Self-Similar Solutions

Locality of interactions was assumed in the derivation of the self-similar solutions in
Sect. 5.1. This does not need any further justification if a local collision efficiency like in (11)
is used. However, in the case of cut-off free interaction kernels that assumption needs to be
verified. In order to examine its validity we will now establish the asymptotic behavior, at
small 7 and at large 7, of the self-similarity function A (7) introduced in Sect. 5. We shall
make the hypotheses (to be verified below) that at very large t the collision integral is dom-
inated by contributions of the range of much smaller t and, conversely, that at very small t
the collision integral is dominated by contributions of the range of much larger t.

Let us start with the large T case. Under the assumption for this range that we formulated
in the previous paragraph, the distribution in this range evolves as in (15), i.e. in the z-
dependent steady state we have

ud.n = —cio, (c*n),

which for i(t) reduces to
2/3 / i3] 4 /
P lah + Bth'] = —ciT §h+rh .

Both sides are homogeneous in 7, but the left hand side is of degree 1/3 higher than the right
hand side, so its dominant contribution should cancel, leading to the asymptotics h(t) ~
77%/F and substituting values of & and 8 from Sect. 5.1 we get h(7) ~ t~%3. According to
the results summarised in Table 1, such —8/3 tail corresponds on one hand to convergence
of the collision integral at the large ¢ limit (as assumed in the self-similar solution) and, on
the other hand, it corresponds to dominance of interactions with much smaller t’s as was
assumed for derivations in this section.

Let us now consider the small t range. As we have hypothesized above about this range,
the dominant contribution to the collision integral now comes form the non-local interaction
term with large particles, which for small o behaves as given in (16), leading to

ud.n = —cyn,
which for i(t) reduces to
3 [ah + BTth'] = —ch.

This can be solved explicitly and yields

3¢p _—2/3 3¢y __2/3
h(t)=Coe " 17U = Cpe T V183, (26)
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where Cy > 0 is an integration constant and the last member has values of @ and B substi-
tuted from Sect. 5.1. Thanks to the very strong stretched exponential decay of & at small ©
the self-consistency of our hypotheses is straightforward to verify. At the same time, such
fast decay at small 7 ensures convergence of the collision integral at the o = 0 limit.

We have therefore proven that our self-similar solutions are local. Note that this result
is remarkable because, in contrast with the KZ solution, the locality property holds even
without introducing a local collisional efficiency factor.

6.1 Numerical Verification of the Height Dependent Solutions

We have performed direct numerical simulations of the set of particles corresponding to
the set-up where one should expect the self-similar behavior. Namely, we generate particles
with distribution n (o) = sin(m (o — 0y)/13)0 =3
and we take them out of the system as soon as their center has crossed the surface at z = 10.

The results for the simulation with free merging are shown in Fig. 6. A rescaling to self-
similar variables has already been done. We see that profiles at different z collapse, which
confirms the self-similar character of our distribution with the self-similarity coefficients
o = —8/3 and B = —1 found in Sect. 5.1. Moreover, we observe that our profile at large ©
is consistent with the —8/3 power law found above.

We have also performed computations with the forced locality model as given in (11)
with ¢ = 2. It comes to no surprise that the observed distribution is also self-similar (since
the assumed locality has become even stronger). Naturally, the shape of the self-similar
function k() is now different. It is interesting that instead of the —8/3 scaling we now see
a —5/3 slope. We will see in the next section that such a slope can be predicted by a “super-
local” model where the integral kinetic equation (5) is replaced by an effective differential
equation preserving the scalings of the local interactions. In the range of large t we observe
an exponential decay i (t) ~ exp(—bt) (where b is a constant), see Fig. 7. As will be shown
below, these results are also predicted by a (regularised) “super-local” model.

and with vertical coordinate 0 < z < 0.5

Fig. 6 Distribution of particle 10°
volumes after 39,000 time steps
for the situation without forced
locality (“g = 00”). The graph is i‘f* st 9
O"Q" x X
presented in self-similar variables 108 f:;o < RS . |
according to (24). The markers N ¢ ®:§®8
identify the spectrum for N o © % ;% o
z=1.75(x); z=3.75 (o); o= i ogoq 00
2=575(+); 2 =775 (%); %, gl e %F e
7 =9.75 (0). The dotted slope 10°F o 4~ «;X+ o E
represents a —8/3 power law 00 -
O¢-><+
x * o
o
1067 *ﬁ@o 4
o,
o]
10° ~ =
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1190 P. Horvai et al.

Fig. 7 Distribution of particle
volumes after 23,000 time steps
for the forced locality situation
with ¢ = 2. The graph is
presented in self-similar variables
according to (24). The markers
identify the spectrum for
z=1.75(x); z=3.75 (0);
z2=575(+); =775 (%);
7=9.75 (). The dotted slope
represents a —5/3 power law,
and the dashed curve shows
Ar—2/3 exp~ 7", made to fit the
dataatt =6

7 Burgers Equation for Local Interaction Case

We will now study the systems with forced locality in greater detail by introducing a “super-
local” model which preserves the essential scalings of the original kinetic equation (5), i.e.

n+udn=—o"'9,(c"3n?). 7)

Particularly, (27) has the same self-similarity exponents as those found in Sect. 5, in either
case of height dependent or time dependent self-similar solutions. We see that on the right
hand side n appears squared, making the equation reminiscent of Burgers equation. We are
going to pursue this idea below, by studying the simpler cases of stationary solutions of this
equation, either in z or in 7.

7.1 Height Dependent Solutions

If we look for steady state in ¢ only, then (27) reduces to

uo,n = —o7 19, (6 3n?).

We turn this into Burgers equation by introducing new variable s such that

o :S)L

and the new function
g(s) = As"n(o (s)).
Then 9,8 = —(AA) s BA/3+15 (51343214 g2) If we set u — 8A/3 + 1 =0 and 131/3 —
21 =0 and (AA) = 2 then we recover Burgers equation:
0.8 = —g0sg. (28)

This happens for A =2, u=13/3and A = 1.

Conservation of total particle volume leads to the conservation of the integral [ g(s)ds,
and we deal with the usual Burgers dynamics even for the weak solutions (i.e. any regu-
larisation of this equation should conserve the volume). In this case we get no finite-time
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Coalescence of Particles by Differential Sedimentation 1191

singularity since A and A are positive. We will use the analogy of (28) with Burgers equation
and assume a discontinuity in our function g would be a shock in the equivalent Burgers sys-
tem. The sawtooth shock can be seen to evolve such that at “time” z the shock is at s, ~ z!/2
and its height is g, ~ z~'/? (hint: write ds,/dz = g,/2 and s,g, = B where B is constant).
For the original variables this gives o, ~ 7/ =z and ny ~ z7*/2z71/2 = z7%/3_ One then
sees that this solution is self-similar with the scaling we have found above. In fact

~8/3 53 -
n(o,z):{z (6/2) ifo <z,

ifo >z.

Remarkably, the —5/3 scaling of the self-similar function A(t) is indeed observed in
the numerical simulation of the particles with the forced locality collision efficiency, see
Fig. 7. This fact indicates that, in spite of simplicity, the super-local model (27) is indeed
quite efficient in predicting certain essential features of the particle kinetics. However, we
have not observed any signature of a shock in our numerical results. Such a shock should
be considered as an artifact of super-locality which is smeared out when a finite interaction
range is allowed.

In fact, following the method exposed in Sect. 4.2 of [2], it is also possible to obtain the
asymptotic behaviour of n(o, z) for large v = o/z (see Sect. 5.1). This is beyond the reach
of the Burgers model.! Following [2] and using notation from our Sect. 5.1, we introduce
the ansatz h(t) ~ At %e~"7, where A, y and 6 are real constants, of which we shall only
determine 6 here. With this ansatz and using the flux formulation described in Appendix 2,
in particular (29) and (30), we can write (22) as (note that we take the values of @ and 8
from (23)):

23 I:—gArfeeﬂ'r + (- )’t)A‘EiQe’V’:|
T oo
= f_lar/ dTl/ doK (1), 1) A%t) O e (tm),
0 1]

The left hand side scales as 7/*~%¢~77 while the right hand side can be seen to scale, for
large 7, as T%/372%¢~7" (in order to see this, note that e~ "1+7) attains its maximum over
the integration domain along the segment 7, + 7, = 7 with 7, 7, > 0 and becomes much
smaller for 7; + 7, — 7 2 ¥ !, so that the effective integration domain is a band of width
of order y~! around the segment 7; + 7, = 7). In order for the two sides to have the same
scaling we must have & =2/3. Then h(t) ~ At~*3e™"" and n(o, z) ~ Az 20 ~23e7o/7,

7.2 Time Dependent Solutions

Let us now seek z-independent solutions of (27). In this situation the latter reduces to
an=—0"'9,(c""n?.

We turn this into Burgers equation as above, introducing s and g(s) as above. Then 9,;g =

—(AN) T2 (5134321 g2) Tf weset 1t —2A 4+ 1 =0and 131/3 —2u =0and AL =2
then we recover Burgers equation. This happens for A = —6, u = —13 and A = —1/3.

IEven if we added diffusive regularization to the Burgers model to account for not strict super-locality, we

—8/3

would get the incorrect z exp(—yo/z) behaviour, where y > 0 is some constant (see also Appendix 2).

@ Springer



1192 P. Horvai et al.

In order to know what happens at shocks we need to know what quantity is conserved by
evolution, even at shocks. We know that the original system conserves the volume f nodo,
which translates for g to conservation of (»/A) [ g(s)s**~#~'ds, and since 2A —pu — 1 =0
this simply means conservation of | g(s)ds. Thus once again we really deal with the usual
Burgers dynamics.

If the initial distribution of n is peaked around oy with height n then the initial distrib-
ution of g is peaked around sy = 001 ™ with height go = As}no. It is convenient to suppose
that the peak is of compact support, say between o < 0, corresponding to s; > ;. Since n
(the particle density) is positive but A is negative, g will be negative and shocks will move
towards smaller s. The peak evolves to give a shock, which will have formed at some s > s,.
To good approximation we get a single sawtooth shock which moves towards 0 and reaches
it in finite time, which for n means (since A < Q) that there is a finite-time singularity at
infinite volume.

The important feature is that the shock in g will arrive at s = 0 at some finite time ¢*,
and for ¢ close to t* its height and speed are approximately constant, say height g* and po-
sition s = fw* where f = t* — ¢. This translates for n to a jump of height A~ls~*g* =
A~ (fw*)"Hg* o« f7* at position o = s* o« *. This is compatible with self-similarity
n(o,t) = t*h(tPo) only for exponents o = —u = 13 and B = —A = 6, which satisfy the
condition from (25).

Note also that, since g can be considered to be approximately constant behind the shock
(i.e. towards large s) , the distribution of n behind the jump (i.e. towards small o) is like
o~13/6 which is a finite capacity power law, as required by conservation of total initial finite
mass.

Since self-similarity only appears in the tail of the distribution, and the tail has finite
capacity, it is difficult to obtain good statistics in numerical simulations for this model. In
the tail, there will be very large particles, but the void fraction will be large too, as [ nodo
is constant, resulting in a sparse data set in the numerical simulation.

8 Concluding Remarks

As we have seen, the very simple model in which particles move at their terminal velocity
and merge upon collision appears to be very rich in features. For this model, we have derived
the Smoluchowski kinetic equation (5) with a kernel for differential sedimentation.

First of all, we considered a setup analogous to one used in turbulence theory where
small particles are produced and large particles are removed from the system with a wide
inertial interval in between these source and sink scales. We obtained a KZ spectrum (Fig. 3)
and showed that it is relevant for the systems with forced locality but irrelevant in the free-
merging case. In the latter case we derived a model (17) in which the dominant interactions
are non-local and we obtained its steady state solution in (18), which was verified with DNS
(Fig. 4).

We have also considered self-similar solutions which are either height dependent or time
dependent. This was done for both the kinetic equation (5) and for a model with “super-
local” interactions (27). For the time dependent dynamics, we predicted a finite-time cre-
ation of infinitely large particles. The solutions for height dependent dynamics were verified
with DNS. Although most particle distributions in the atmosphere are height dependent [5],
the relevance of self-similarity in such distributions requires further study.

Our theoretical results were obtained from the kinetic equation (5) which is essentially a
mean field approach. Thus, it is intriguing that such theoretical predictions in all considered
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situations agree well with the numerical simulations of the complete system. This suggests
that the mean field assumption leading to the kinetic equation should be valid in the con-
sidered sedimentation model, and the origin of this could be addressed in the future with
techniques of field theory and renormalization.

Finally, we have only considered very simple models either without the collision effi-
ciency factor, or with a simple forced locality factor conform (11). Other forms of localizing
kernels should be considered for more realistic situations.

Acknowledgements We would like to thank Miguel Bustamante, Antti Kupiainen, Lian-Ping Wang and
Oleg Zaboronski for helpful discussions and suggestions.

Appendix 1: Locality of Power-Law Distributions

Power law distributions of the form n(c) ~ oV are important because they arise from the
formal analysis of the KZ spectra, self-similar solutions, etc. However, some of such formal
considerations implicitly use convergence of the collision integral on RHS of (5) which
has the meaning of the interaction locality. Conversely, other derivations may assume non-
locality i.e. that the evolution is dominated mostly by the interactions with the smallest or
the largest particles in the system corresponding to the vicinities of the small-o and the
large-o integration limits. Therefore, the conditions of convergence of the collision integral
must be found, and this will be done in this appendix for a general distribution n(c) ~ o".
Introduce f (o, 0,) = K (01, 02)n1n,. Equation (5) may be expressed in terms of f as

d o/2 Omax
an:/ dolf(crl,cr—cn)—/ do, f(01,0).

min Omin

We can then split dn/d¢ into two parts, which we shall call lower and upper contributions:

d d + d
—n=—| n+—\| n
dt dr|_ dr|.
with
d o/2
— :/ doi[f(o1,0 —01) — f(o1,0)],
dt < Omin
d Omax
—| n=- d ,0).
ik / . doif10)

We start by analyzing the lower contribution, more specifically its convergence as oyy;n
goes to 0. For this the value of the integrand at oy < o needs to be known. This can be
approximated by the Taylor expansion

f(o1,0 —o1) — f(01,0) ~ 010, f(01,0).
For small | we also have f(oy, o) ~ ck*mo*3nin so we have

d

o/2
n~—citn f nyo1doy |8, (c*3n).
dr|_ .

min
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Table 1 Locality of interaction

7 7
with small and large particles, as vV<-—3 —3sv=-2 —2<v
dependent on the scaling
exponent of n (o) (compare Upper Local Non-local Non-local
Connaughton et al. [8]) Lower Non-local Non-local Local

The interaction is local at small scales iff the integral above remains finite when oy, — 0.
This is equivalent to v > —2.

We now turn to the upper contribution, more specifically its convergence as o, goes to
infinity. For this the value of the integrand at o >> o needs to be known. In these asymptotics
we have f(oy,0) ~ 014/311 1n and therefore

d
dr

Omax 4/3
n~ —n/ nio,’"doj.
> /2

The interaction is local at large scales iff the integral above remains finite when op,x — 00.
This is equivalent to v < —7/3.

We thus get the picture that for v < —7/3 the interaction is local at large scales but
non-local at small scales. For —7/3 < v < —2 both ends are non-local. And for v > —2
interaction is non-local at large scales but local at small scales. In particular, we never have
locality at both ends.

Appendix 2: Considerations on the Flux

The flux ® (o) of volume going into particles of volume larger than ¢ can be obtained by the
following consideration. The flux in question is the volume contained in particles of volumes
smaller o that merge during unit time with some particle to give a particle of volume larger
than o. Say one such particle has oy < o, then it can merge with any particle with o, such
that oy + 0, > 0, i.e. 0, > 0 — o0;. Using the collision kernel K the above consideration is
made formal as

CD(U):/ dGl/ doyo1 K (01, 02)n(o1)n(os). (29)
0 o—0]

One readily verifies by direct computation (and a minor trick) that the right hand side of the
kinetic equation (5) equals —o~!9, ® (o), so we have as we may expect
dn(o)
o
dr

= —9,D(0). (30)

We immediately remark two things about ®. First, it is convergent at the lower bound
(0 — 0) if and only if interaction with the small o tail is local, and similarly it is con-
vergent at the upper bound (o, — 00) if and only if interaction with the large o tail is local
(compare with Appendix 1).

The other remark is that ® (o) scales as o*/3t3+2” (if n scales as ¢"). Hence, for v =
—(4/3 4 3)/2 = —13/6 we have 9,®(c) =0 and thus, from (30), 0 ~'¥/% is a stationary
power law solution.

The next thing we do is Taylor expand »n around n (o) in the expression (29) of the flux.
Then to lowest (zeroth) order we get

d>(o):n(a)2/ dalf doyo K (01, 07).
0 o—0o]
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4/343

Since the integral above scales as o , this can be written as

®(0) =C'o***n(0)?,

with C’ > 0 (since K > 0), and substituting this into (30) we get an equation equivalent to
Burgers equation (cf. Sect. 7).

Remark Perhaps one caveat is that the simple Taylor expansion proposed above doesn’t
seem to correspond to an expansion in some small parameter of the problem. One natural
small parameter could be ¢ — 1 from the definition (11) of the collision efficiency. But the
expansion in ¢ — 1 would be slightly more complex.

One can carry on this Taylor expansion and get terms of higher order, which will have
more derivatives 9, and higher powers of o. In the “Burgers” coordinates introduced in
Sect. 7, the same holds but with powers and derivatives in s. In particular to next order we
get, in the setup of Sect. 7.2, 8,g = —3,(C, 8> + C259,87).
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